\(\newcommand{\P}{\mathbb{P}}\) \(\newcommand{\E}{\mathbb{E}}\) \(\newcommand{\R}{\mathbb{R}}\) \(\newcommand{\N}{\mathbb{N}}\) \(\newcommand{\bs}{\boldsymbol}\) \(\newcommand{\var}{\text{var}}\) \(\newcommand{\cov}{\text{cov}}\) \(\newcommand{\cor}{\text{cor}}\) \(\newcommand{\jack}{\text{j}}\) \(\newcommand{\queen}{\text{q}}\) \(\newcommand{\king}{\text{k}}\)
  1. Random
  2. 12. Games of Chance
  3. 1
  4. 2
  5. 3
  6. 4
  7. 5
  8. 6
  9. 7
  10. 8
  11. 9
  12. 10
  13. 11
  14. 12

3. Bridge

Introduction

Recall that a deck of cards naturally has the structure of a product set and so can be modeled mathematically by \[ D = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, \jack, \queen, \king\} \times \{\clubsuit, \diamondsuit, \heartsuit, \spadesuit\} \] where the first coordinate represents the denomination or kind (ace, two through 10, jack, queen, king) and where the second coordinate represents the suit (clubs, diamond, hearts, spades).

Sometimes we represent a card as a string rather than an ordered pair (for example \(\queen \, \heartsuit\) for the queen of hearts).

A bridge hand is an (unordered) set of 13 cards chosen at random from the deck \(D\). There are \(635\,013\,559\,600\) bridge hands.

Details:

A bridge hand is a combination of size 13 from a population of size 52, and hence the number of bridge hands is \[\binom{52}{13} = 635\,013\,559\,600\]

Open the bridge app and deal a few hands. The graphs and tables will be explained later.

A bridge deal consists of distributing the 52 cards in the deck randomly and equally to four players, traditionally named North, South, East, and West, so that each player has a bridge hand. There are \(53\,644\,737\,765\,488\,792\,839\,237\,440\,000\) bridge deals.

Details:

A bridge deal is a partition of of the deck into 4 distinct subsets of 13 cards each. So the number of bridge deals is the multinomial coefficient \[\binom{52}{13 \, 13 \, 13 \, 13} = 53\,644\,737\,765\,488\,792\,839\,237\,440\,000\].

Contract bridge is a complex and interesting card game. We give just a very brief sketch; visit the article on contract bridge for more information. North and South are partners, as are East and West. The partners sit opposite of each other. After the cards are dealt, the players bid in turn in an auction. The winning player then has a contract to take a specified number of tricks. The winning player's partner is the dummy and lays down her hand. The winning player plays both her hand and the dummy's.

In this section our primary interest is in a couple of measures of the strength of a hand of bridge. We will use the term distribution in two ways. Of course, we know about the probability distribution of a random variable. But we will also refer to the distribution of a bridge hand by denomination or suit. Combining the two terms, we will study the probability distribution of various distributions of the bridge hand. Many of our results are given in tabular form. Longer tables are truncated and can be scrolled. All of the tables can be sorted according to a variable by clicking on the variable name in the table header. The hypergeometric distribution and the multivariate hypergeometric distribution play fundamental roles.

High-Card Distribution

When playing a trick, the players must follow suit, if they can, in which case the trick is won by the highest card played. So the four highest denominations (ace, king, queen, and jack) are particularly important, and are referred to as high cards or honor cards.

Let \(N\) denote the number of cards in the hand that are not high cards (so, denominations 2–10). Then \((A, K, Q, J, N)\) has the multivariate hypergeometric distribution with parameters \((4, 4, 4, 4, 36)\) and 13. The probability density function \(f\) is given by \[f(a, k, q, j, n) = \frac{\binom{4}{a} \binom{4}{k} \binom {4}{q} \binom{4}{j} \binom{36}{n}}{\binom{52}{13}}, \quad a, \, k, \, q, \, j, \, n \in \N, \; a + k + q + j + n = 13\]

Details:

This follows directly from the definition of the multivariate hypergeometric distribution since we are selecting a random sample of size 13 from a population with 5 types of objects: 4 aces, 4 kings, 4 queens, 4 jacks, and 36 non-honor cards.

The following result gives the means, variances, covariances, and correlations.

In the setting of . let \(X\) and \(Y\) denote distinct high card variables (elements of \(\{A, K, Q, J\}\)) and let \(N\) denote the number of hon-honor cards as before. Then

  1. \(X\) has the hypergeometric distribution with parameters \((4, 48)\) and 13, and \(N\) has the hypergeometric distribution with parameters \((36, 16)\) and 13.
  2. \(\E(X) = 1\) and \(\E(N) = 9\)
  3. \(\var(X) = 12 / 17\) and \(\var(N) = 36 / 17\)
  4. \(\cov(X, Y) = -1 / 17\) and \(\cov(X, N) = -9 / 17\)
  5. \(\cor(X, Y) = -1 / 12\) and \(\cor(X, N) = -\sqrt{3} / 4\)
Detials:

These are standard results for the multivariate hypergeometric distribution. Of course, the variables \(A, \, K, \, Q, \, J\) are identically distributed.

So the mean of the vector \((A, K, Q, J, L)\) is \((1, 1, 1, 1, 9)\).

Run the bridge experiment 1000 times. For each of the following random variables, note the shape and location of the probability density function, and compare the empirical density and moments to the probability density and moments.

  1. \(A\)
  2. \(K\)
  3. \(Q\)
  4. \(J\)
  5. \(N\)

The high-card point value of a bridge hand is \(V = 4 A + 3 K + 2 Q + J\) where \(A\) is the number of aces, \(K\) the number of kings, \(Q\) the number of queens, and \(J\) the number of jacks in the hand.

So an ace is worth 4 high-card points, a king 3, a queen 2, and a jack 1. The cards of denomination 2–10 are not awarded points. Our primary interest is in the distribution of \(V\) and fortunately we can find this from the distribution of the high-card counts. Table below gives the density function in in tabular form. The data are originally sorted in a lexicographic way in terms of the high cards. If you sort by some other variable, you can return to the default sorting by clicking on the index variable in the first column. Note that there are 610 points in the support set of the distribution.

High card distribution table
Index \(A\) \(K\) \(Q\) \(J\) \(N\) \(V\) Hands Probability
1 0 0 0 0 13 0 2310789600 0.003638961035
2 0 0 0 1 12 1 5006710800 0.007884415576
3 0 0 0 2 11 2 3604831776 0.005676779214
4 0 0 0 3 10 3 1016747424 0.001601142855
5 0 0 0 4 9 4 94143280 0.000148253968
6 0 0 1 0 12 2 5006710800 0.007884415576
7 0 0 1 1 11 3 9612884736 0.015138077905
8 0 0 1 2 10 4 6100484544 0.009606857132
9 0 0 1 3 9 5 1506292480 0.002372063489
10 0 0 1 4 8 6 121041360 0.000190612245
11 0 0 2 0 11 4 3604831776 0.005676779214
12 0 0 2 1 10 5 6100484544 0.009606857132
13 0 0 2 2 9 6 3389158080 0.005337142851
14 0 0 2 3 8 7 726248160 0.001143673468
15 0 0 2 4 7 8 50086080 0.000078874032
16 0 0 3 0 10 6 1016747424 0.001601142855
17 0 0 3 1 9 7 1506292480 0.002372063489
18 0 0 3 2 8 8 726248160 0.001143673468
19 0 0 3 3 7 9 133562880 0.000210330753
20 0 0 3 4 6 10 7791168 0.000012269294
21 0 0 4 0 9 8 94143280 0.000148253968
22 0 0 4 1 8 9 121041360 0.000190612245
23 0 0 4 2 7 10 50086080 0.000078874032
24 0 0 4 3 6 11 7791168 0.000012269294
25 0 0 4 4 5 12 376992 0.000000593676
26 0 1 0 0 12 3 5006710800 0.007884415576
27 0 1 0 1 11 4 9612884736 0.015138077905
28 0 1 0 2 10 5 6100484544 0.009606857132
29 0 1 0 3 9 6 1506292480 0.002372063489
30 0 1 0 4 8 7 121041360 0.000190612245
31 0 1 1 0 11 5 9612884736 0.015138077905
32 0 1 1 1 10 6 16267958784 0.025618285686
33 0 1 1 2 9 7 9037754880 0.014232380936
34 0 1 1 3 8 8 1936661760 0.003049795915
35 0 1 1 4 7 9 133562880 0.000210330753
36 0 1 2 0 10 7 6100484544 0.009606857132
37 0 1 2 1 9 8 9037754880 0.014232380936
38 0 1 2 2 8 9 4357488960 0.006862040809
39 0 1 2 3 7 10 801377280 0.001261984517
40 0 1 2 4 6 11 46747008 0.000073615763
41 0 1 3 0 9 9 1506292480 0.002372063489
42 0 1 3 1 8 10 1936661760 0.003049795915
43 0 1 3 2 7 11 801377280 0.001261984517
44 0 1 3 3 6 12 124658688 0.000196308703
45 0 1 3 4 5 13 6031872 0.000009498808
46 0 1 4 0 8 11 121041360 0.000190612245
47 0 1 4 1 7 12 133562880 0.000210330753
48 0 1 4 2 6 13 46747008 0.000073615763
49 0 1 4 3 5 14 6031872 0.000009498808
50 0 1 4 4 4 15 235620 0.000000371047
51 0 2 0 0 11 6 3604831776 0.005676779214
52 0 2 0 1 10 7 6100484544 0.009606857132
53 0 2 0 2 9 8 3389158080 0.005337142851
54 0 2 0 3 8 9 726248160 0.001143673468
55 0 2 0 4 7 10 50086080 0.000078874032
56 0 2 1 0 10 8 6100484544 0.009606857132
57 0 2 1 1 9 9 9037754880 0.014232380936
58 0 2 1 2 8 10 4357488960 0.006862040809
59 0 2 1 3 7 11 801377280 0.001261984517
60 0 2 1 4 6 12 46747008 0.000073615763
61 0 2 2 0 9 10 3389158080 0.005337142851
62 0 2 2 1 8 11 4357488960 0.006862040809
63 0 2 2 2 7 12 1803098880 0.002839465162
64 0 2 2 3 6 13 280482048 0.000441694581
65 0 2 2 4 5 14 13571712 0.000021372318
66 0 2 3 0 8 12 726248160 0.001143673468
67 0 2 3 1 7 13 801377280 0.001261984517
68 0 2 3 2 6 14 280482048 0.000441694581
69 0 2 3 3 5 15 36191232 0.000056992849
70 0 2 3 4 4 16 1413720 0.000002226283
71 0 2 4 0 7 14 50086080 0.000078874032
72 0 2 4 1 6 15 46747008 0.000073615763
73 0 2 4 2 5 16 13571712 0.000021372318
74 0 2 4 3 4 17 1413720 0.000002226283
75 0 2 4 4 3 18 42840 0.000000067463
76 0 3 0 0 10 9 1016747424 0.001601142855
77 0 3 0 1 9 10 1506292480 0.002372063489
78 0 3 0 2 8 11 726248160 0.001143673468
79 0 3 0 3 7 12 133562880 0.000210330753
80 0 3 0 4 6 13 7791168 0.000012269294
81 0 3 1 0 9 11 1506292480 0.002372063489
82 0 3 1 1 8 12 1936661760 0.003049795915
83 0 3 1 2 7 13 801377280 0.001261984517
84 0 3 1 3 6 14 124658688 0.000196308703
85 0 3 1 4 5 15 6031872 0.000009498808
86 0 3 2 0 8 13 726248160 0.001143673468
87 0 3 2 1 7 14 801377280 0.001261984517
88 0 3 2 2 6 15 280482048 0.000441694581
89 0 3 2 3 5 16 36191232 0.000056992849
90 0 3 2 4 4 17 1413720 0.000002226283
91 0 3 3 0 7 15 133562880 0.000210330753
92 0 3 3 1 6 16 124658688 0.000196308703
93 0 3 3 2 5 17 36191232 0.000056992849
94 0 3 3 3 4 18 3769920 0.000005936755
95 0 3 3 4 3 19 114240 0.000000179902
96 0 3 4 0 6 17 7791168 0.000012269294
97 0 3 4 1 5 18 6031872 0.000009498808
98 0 3 4 2 4 19 1413720 0.000002226283
99 0 3 4 3 3 20 114240 0.000000179902
100 0 3 4 4 2 21 2520 0.000000003968
101 0 4 0 0 9 12 94143280 0.000148253968
102 0 4 0 1 8 13 121041360 0.000190612245
103 0 4 0 2 7 14 50086080 0.000078874032
104 0 4 0 3 6 15 7791168 0.000012269294
105 0 4 0 4 5 16 376992 0.000000593676
106 0 4 1 0 8 14 121041360 0.000190612245
107 0 4 1 1 7 15 133562880 0.000210330753
108 0 4 1 2 6 16 46747008 0.000073615763
109 0 4 1 3 5 17 6031872 0.000009498808
110 0 4 1 4 4 18 235620 0.000000371047
111 0 4 2 0 7 16 50086080 0.000078874032
112 0 4 2 1 6 17 46747008 0.000073615763
113 0 4 2 2 5 18 13571712 0.000021372318
114 0 4 2 3 4 19 1413720 0.000002226283
115 0 4 2 4 3 20 42840 0.000000067463
116 0 4 3 0 6 18 7791168 0.000012269294
117 0 4 3 1 5 19 6031872 0.000009498808
118 0 4 3 2 4 20 1413720 0.000002226283
119 0 4 3 3 3 21 114240 0.000000179902
120 0 4 3 4 2 22 2520 0.000000003968
121 0 4 4 0 5 20 376992 0.000000593676
122 0 4 4 1 4 21 235620 0.000000371047
123 0 4 4 2 3 22 42840 0.000000067463
124 0 4 4 3 2 23 2520 0.000000003968
125 0 4 4 4 1 24 36 0.000000000057
126 1 0 0 0 12 4 5006710800 0.007884415576
127 1 0 0 1 11 5 9612884736 0.015138077905
128 1 0 0 2 10 6 6100484544 0.009606857132
129 1 0 0 3 9 7 1506292480 0.002372063489
130 1 0 0 4 8 8 121041360 0.000190612245
131 1 0 1 0 11 6 9612884736 0.015138077905
132 1 0 1 1 10 7 16267958784 0.025618285686
133 1 0 1 2 9 8 9037754880 0.014232380936
134 1 0 1 3 8 9 1936661760 0.003049795915
135 1 0 1 4 7 10 133562880 0.000210330753
136 1 0 2 0 10 8 6100484544 0.009606857132
137 1 0 2 1 9 9 9037754880 0.014232380936
138 1 0 2 2 8 10 4357488960 0.006862040809
139 1 0 2 3 7 11 801377280 0.001261984517
140 1 0 2 4 6 12 46747008 0.000073615763
141 1 0 3 0 9 10 1506292480 0.002372063489
142 1 0 3 1 8 11 1936661760 0.003049795915
143 1 0 3 2 7 12 801377280 0.001261984517
144 1 0 3 3 6 13 124658688 0.000196308703
145 1 0 3 4 5 14 6031872 0.000009498808
146 1 0 4 0 8 12 121041360 0.000190612245
147 1 0 4 1 7 13 133562880 0.000210330753
148 1 0 4 2 6 14 46747008 0.000073615763
149 1 0 4 3 5 15 6031872 0.000009498808
150 1 0 4 4 4 16 235620 0.000000371047
151 1 1 0 0 11 7 9612884736 0.015138077905
152 1 1 0 1 10 8 16267958784 0.025618285686
153 1 1 0 2 9 9 9037754880 0.014232380936
154 1 1 0 3 8 10 1936661760 0.003049795915
155 1 1 0 4 7 11 133562880 0.000210330753
156 1 1 1 0 10 9 16267958784 0.025618285686
157 1 1 1 1 9 10 24100679680 0.037953015830
158 1 1 1 2 8 11 11619970560 0.018298775490
159 1 1 1 3 7 12 2137006080 0.003365292044
160 1 1 1 4 6 13 124658688 0.000196308703
161 1 1 2 0 9 11 9037754880 0.014232380936
162 1 1 2 1 8 12 11619970560 0.018298775490
163 1 1 2 2 7 13 4808263680 0.007571907099
164 1 1 2 3 6 14 747952128 0.001177852215
165 1 1 2 4 5 15 36191232 0.000056992849
166 1 1 3 0 8 13 1936661760 0.003049795915
167 1 1 3 1 7 14 2137006080 0.003365292044
168 1 1 3 2 6 15 747952128 0.001177852215
169 1 1 3 3 5 16 96509952 0.000151980931
170 1 1 3 4 4 17 3769920 0.000005936755
171 1 1 4 0 7 15 133562880 0.000210330753
172 1 1 4 1 6 16 124658688 0.000196308703
173 1 1 4 2 5 17 36191232 0.000056992849
174 1 1 4 3 4 18 3769920 0.000005936755
175 1 1 4 4 3 19 114240 0.000000179902
176 1 2 0 0 10 10 6100484544 0.009606857132
177 1 2 0 1 9 11 9037754880 0.014232380936
178 1 2 0 2 8 12 4357488960 0.006862040809
179 1 2 0 3 7 13 801377280 0.001261984517
180 1 2 0 4 6 14 46747008 0.000073615763
181 1 2 1 0 9 12 9037754880 0.014232380936
182 1 2 1 1 8 13 11619970560 0.018298775490
183 1 2 1 2 7 14 4808263680 0.007571907099
184 1 2 1 3 6 15 747952128 0.001177852215
185 1 2 1 4 5 16 36191232 0.000056992849
186 1 2 2 0 8 14 4357488960 0.006862040809
187 1 2 2 1 7 15 4808263680 0.007571907099
188 1 2 2 2 6 16 1682892288 0.002650167485
189 1 2 2 3 5 17 217147392 0.000341957095
190 1 2 2 4 4 18 8482320 0.000013357699
191 1 2 3 0 7 16 801377280 0.001261984517
192 1 2 3 1 6 17 747952128 0.001177852215
193 1 2 3 2 5 18 217147392 0.000341957095
194 1 2 3 3 4 19 22619520 0.000035620531
195 1 2 3 4 3 20 685440 0.000001079410
196 1 2 4 0 6 18 46747008 0.000073615763
197 1 2 4 1 5 19 36191232 0.000056992849
198 1 2 4 2 4 20 8482320 0.000013357699
199 1 2 4 3 3 21 685440 0.000001079410
200 1 2 4 4 2 22 15120 0.000000023811
201 1 3 0 0 9 13 1506292480 0.002372063489
202 1 3 0 1 8 14 1936661760 0.003049795915
203 1 3 0 2 7 15 801377280 0.001261984517
204 1 3 0 3 6 16 124658688 0.000196308703
205 1 3 0 4 5 17 6031872 0.000009498808
206 1 3 1 0 8 15 1936661760 0.003049795915
207 1 3 1 1 7 16 2137006080 0.003365292044
208 1 3 1 2 6 17 747952128 0.001177852215
209 1 3 1 3 5 18 96509952 0.000151980931
210 1 3 1 4 4 19 3769920 0.000005936755
211 1 3 2 0 7 17 801377280 0.001261984517
212 1 3 2 1 6 18 747952128 0.001177852215
213 1 3 2 2 5 19 217147392 0.000341957095
214 1 3 2 3 4 20 22619520 0.000035620531
215 1 3 2 4 3 21 685440 0.000001079410
216 1 3 3 0 6 19 124658688 0.000196308703
217 1 3 3 1 5 20 96509952 0.000151980931
218 1 3 3 2 4 21 22619520 0.000035620531
219 1 3 3 3 3 22 1827840 0.000002878427
220 1 3 3 4 2 23 40320 0.000000063495
221 1 3 4 0 5 21 6031872 0.000009498808
222 1 3 4 1 4 22 3769920 0.000005936755
223 1 3 4 2 3 23 685440 0.000001079410
224 1 3 4 3 2 24 40320 0.000000063495
225 1 3 4 4 1 25 576 0.000000000907
226 1 4 0 0 8 16 121041360 0.000190612245
227 1 4 0 1 7 17 133562880 0.000210330753
228 1 4 0 2 6 18 46747008 0.000073615763
229 1 4 0 3 5 19 6031872 0.000009498808
230 1 4 0 4 4 20 235620 0.000000371047
231 1 4 1 0 7 18 133562880 0.000210330753
232 1 4 1 1 6 19 124658688 0.000196308703
233 1 4 1 2 5 20 36191232 0.000056992849
234 1 4 1 3 4 21 3769920 0.000005936755
235 1 4 1 4 3 22 114240 0.000000179902
236 1 4 2 0 6 20 46747008 0.000073615763
237 1 4 2 1 5 21 36191232 0.000056992849
238 1 4 2 2 4 22 8482320 0.000013357699
239 1 4 2 3 3 23 685440 0.000001079410
240 1 4 2 4 2 24 15120 0.000000023811
241 1 4 3 0 5 22 6031872 0.000009498808
242 1 4 3 1 4 23 3769920 0.000005936755
243 1 4 3 2 3 24 685440 0.000001079410
244 1 4 3 3 2 25 40320 0.000000063495
245 1 4 3 4 1 26 576 0.000000000907
246 1 4 4 0 4 24 235620 0.000000371047
247 1 4 4 1 3 25 114240 0.000000179902
248 1 4 4 2 2 26 15120 0.000000023811
249 1 4 4 3 1 27 576 0.000000000907
250 1 4 4 4 0 28 4 0.000000000006
251 2 0 0 0 11 8 3604831776 0.005676779214
252 2 0 0 1 10 9 6100484544 0.009606857132
253 2 0 0 2 9 10 3389158080 0.005337142851
254 2 0 0 3 8 11 726248160 0.001143673468
255 2 0 0 4 7 12 50086080 0.000078874032
256 2 0 1 0 10 10 6100484544 0.009606857132
257 2 0 1 1 9 11 9037754880 0.014232380936
258 2 0 1 2 8 12 4357488960 0.006862040809
259 2 0 1 3 7 13 801377280 0.001261984517
260 2 0 1 4 6 14 46747008 0.000073615763
261 2 0 2 0 9 12 3389158080 0.005337142851
262 2 0 2 1 8 13 4357488960 0.006862040809
263 2 0 2 2 7 14 1803098880 0.002839465162
264 2 0 2 3 6 15 280482048 0.000441694581
265 2 0 2 4 5 16 13571712 0.000021372318
266 2 0 3 0 8 14 726248160 0.001143673468
267 2 0 3 1 7 15 801377280 0.001261984517
268 2 0 3 2 6 16 280482048 0.000441694581
269 2 0 3 3 5 17 36191232 0.000056992849
270 2 0 3 4 4 18 1413720 0.000002226283
271 2 0 4 0 7 16 50086080 0.000078874032
272 2 0 4 1 6 17 46747008 0.000073615763
273 2 0 4 2 5 18 13571712 0.000021372318
274 2 0 4 3 4 19 1413720 0.000002226283
275 2 0 4 4 3 20 42840 0.000000067463
276 2 1 0 0 10 11 6100484544 0.009606857132
277 2 1 0 1 9 12 9037754880 0.014232380936
278 2 1 0 2 8 13 4357488960 0.006862040809
279 2 1 0 3 7 14 801377280 0.001261984517
280 2 1 0 4 6 15 46747008 0.000073615763
281 2 1 1 0 9 13 9037754880 0.014232380936
282 2 1 1 1 8 14 11619970560 0.018298775490
283 2 1 1 2 7 15 4808263680 0.007571907099
284 2 1 1 3 6 16 747952128 0.001177852215
285 2 1 1 4 5 17 36191232 0.000056992849
286 2 1 2 0 8 15 4357488960 0.006862040809
287 2 1 2 1 7 16 4808263680 0.007571907099
288 2 1 2 2 6 17 1682892288 0.002650167485
289 2 1 2 3 5 18 217147392 0.000341957095
290 2 1 2 4 4 19 8482320 0.000013357699
291 2 1 3 0 7 17 801377280 0.001261984517
292 2 1 3 1 6 18 747952128 0.001177852215
293 2 1 3 2 5 19 217147392 0.000341957095
294 2 1 3 3 4 20 22619520 0.000035620531
295 2 1 3 4 3 21 685440 0.000001079410
296 2 1 4 0 6 19 46747008 0.000073615763
297 2 1 4 1 5 20 36191232 0.000056992849
298 2 1 4 2 4 21 8482320 0.000013357699
299 2 1 4 3 3 22 685440 0.000001079410
300 2 1 4 4 2 23 15120 0.000000023811
301 2 2 0 0 9 14 3389158080 0.005337142851
302 2 2 0 1 8 15 4357488960 0.006862040809
303 2 2 0 2 7 16 1803098880 0.002839465162
304 2 2 0 3 6 17 280482048 0.000441694581
305 2 2 0 4 5 18 13571712 0.000021372318
306 2 2 1 0 8 16 4357488960 0.006862040809
307 2 2 1 1 7 17 4808263680 0.007571907099
308 2 2 1 2 6 18 1682892288 0.002650167485
309 2 2 1 3 5 19 217147392 0.000341957095
310 2 2 1 4 4 20 8482320 0.000013357699
311 2 2 2 0 7 18 1803098880 0.002839465162
312 2 2 2 1 6 19 1682892288 0.002650167485
313 2 2 2 2 5 20 488581632 0.000769403463
314 2 2 2 3 4 21 50893920 0.000080146194
315 2 2 2 4 3 22 1542240 0.000002428673
316 2 2 3 0 6 20 280482048 0.000441694581
317 2 2 3 1 5 21 217147392 0.000341957095
318 2 2 3 2 4 22 50893920 0.000080146194
319 2 2 3 3 3 23 4112640 0.000006476460
320 2 2 3 4 2 24 90720 0.000000142863
321 2 2 4 0 5 22 13571712 0.000021372318
322 2 2 4 1 4 23 8482320 0.000013357699
323 2 2 4 2 3 24 1542240 0.000002428673
324 2 2 4 3 2 25 90720 0.000000142863
325 2 2 4 4 1 26 1296 0.000000002041
326 2 3 0 0 8 17 726248160 0.001143673468
327 2 3 0 1 7 18 801377280 0.001261984517
328 2 3 0 2 6 19 280482048 0.000441694581
329 2 3 0 3 5 20 36191232 0.000056992849
330 2 3 0 4 4 21 1413720 0.000002226283
331 2 3 1 0 7 19 801377280 0.001261984517
332 2 3 1 1 6 20 747952128 0.001177852215
333 2 3 1 2 5 21 217147392 0.000341957095
334 2 3 1 3 4 22 22619520 0.000035620531
335 2 3 1 4 3 23 685440 0.000001079410
336 2 3 2 0 6 21 280482048 0.000441694581
337 2 3 2 1 5 22 217147392 0.000341957095
338 2 3 2 2 4 23 50893920 0.000080146194
339 2 3 2 3 3 24 4112640 0.000006476460
340 2 3 2 4 2 25 90720 0.000000142863
341 2 3 3 0 5 23 36191232 0.000056992849
342 2 3 3 1 4 24 22619520 0.000035620531
343 2 3 3 2 3 25 4112640 0.000006476460
344 2 3 3 3 2 26 241920 0.000000380968
345 2 3 3 4 1 27 3456 0.000000005442
346 2 3 4 0 4 25 1413720 0.000002226283
347 2 3 4 1 3 26 685440 0.000001079410
348 2 3 4 2 2 27 90720 0.000000142863
349 2 3 4 3 1 28 3456 0.000000005442
350 2 3 4 4 0 29 24 0.000000000038
351 2 4 0 0 7 20 50086080 0.000078874032
352 2 4 0 1 6 21 46747008 0.000073615763
353 2 4 0 2 5 22 13571712 0.000021372318
354 2 4 0 3 4 23 1413720 0.000002226283
355 2 4 0 4 3 24 42840 0.000000067463
356 2 4 1 0 6 22 46747008 0.000073615763
357 2 4 1 1 5 23 36191232 0.000056992849
358 2 4 1 2 4 24 8482320 0.000013357699
359 2 4 1 3 3 25 685440 0.000001079410
360 2 4 1 4 2 26 15120 0.000000023811
361 2 4 2 0 5 24 13571712 0.000021372318
362 2 4 2 1 4 25 8482320 0.000013357699
363 2 4 2 2 3 26 1542240 0.000002428673
364 2 4 2 3 2 27 90720 0.000000142863
365 2 4 2 4 1 28 1296 0.000000002041
366 2 4 3 0 4 26 1413720 0.000002226283
367 2 4 3 1 3 27 685440 0.000001079410
368 2 4 3 2 2 28 90720 0.000000142863
369 2 4 3 3 1 29 3456 0.000000005442
370 2 4 3 4 0 30 24 0.000000000038
371 2 4 4 0 3 28 42840 0.000000067463
372 2 4 4 1 2 29 15120 0.000000023811
373 2 4 4 2 1 30 1296 0.000000002041
374 2 4 4 3 0 31 24 0.000000000038
375 3 0 0 0 10 12 1016747424 0.001601142855
376 3 0 0 1 9 13 1506292480 0.002372063489
377 3 0 0 2 8 14 726248160 0.001143673468
378 3 0 0 3 7 15 133562880 0.000210330753
379 3 0 0 4 6 16 7791168 0.000012269294
380 3 0 1 0 9 14 1506292480 0.002372063489
381 3 0 1 1 8 15 1936661760 0.003049795915
382 3 0 1 2 7 16 801377280 0.001261984517
383 3 0 1 3 6 17 124658688 0.000196308703
384 3 0 1 4 5 18 6031872 0.000009498808
385 3 0 2 0 8 16 726248160 0.001143673468
386 3 0 2 1 7 17 801377280 0.001261984517
387 3 0 2 2 6 18 280482048 0.000441694581
388 3 0 2 3 5 19 36191232 0.000056992849
389 3 0 2 4 4 20 1413720 0.000002226283
390 3 0 3 0 7 18 133562880 0.000210330753
391 3 0 3 1 6 19 124658688 0.000196308703
392 3 0 3 2 5 20 36191232 0.000056992849
393 3 0 3 3 4 21 3769920 0.000005936755
394 3 0 3 4 3 22 114240 0.000000179902
395 3 0 4 0 6 20 7791168 0.000012269294
396 3 0 4 1 5 21 6031872 0.000009498808
397 3 0 4 2 4 22 1413720 0.000002226283
398 3 0 4 3 3 23 114240 0.000000179902
399 3 0 4 4 2 24 2520 0.000000003968
400 3 1 0 0 9 15 1506292480 0.002372063489
401 3 1 0 1 8 16 1936661760 0.003049795915
402 3 1 0 2 7 17 801377280 0.001261984517
403 3 1 0 3 6 18 124658688 0.000196308703
404 3 1 0 4 5 19 6031872 0.000009498808
405 3 1 1 0 8 17 1936661760 0.003049795915
406 3 1 1 1 7 18 2137006080 0.003365292044
407 3 1 1 2 6 19 747952128 0.001177852215
408 3 1 1 3 5 20 96509952 0.000151980931
409 3 1 1 4 4 21 3769920 0.000005936755
410 3 1 2 0 7 19 801377280 0.001261984517
411 3 1 2 1 6 20 747952128 0.001177852215
412 3 1 2 2 5 21 217147392 0.000341957095
413 3 1 2 3 4 22 22619520 0.000035620531
414 3 1 2 4 3 23 685440 0.000001079410
415 3 1 3 0 6 21 124658688 0.000196308703
416 3 1 3 1 5 22 96509952 0.000151980931
417 3 1 3 2 4 23 22619520 0.000035620531
418 3 1 3 3 3 24 1827840 0.000002878427
419 3 1 3 4 2 25 40320 0.000000063495
420 3 1 4 0 5 23 6031872 0.000009498808
421 3 1 4 1 4 24 3769920 0.000005936755
422 3 1 4 2 3 25 685440 0.000001079410
423 3 1 4 3 2 26 40320 0.000000063495
424 3 1 4 4 1 27 576 0.000000000907
425 3 2 0 0 8 18 726248160 0.001143673468
426 3 2 0 1 7 19 801377280 0.001261984517
427 3 2 0 2 6 20 280482048 0.000441694581
428 3 2 0 3 5 21 36191232 0.000056992849
429 3 2 0 4 4 22 1413720 0.000002226283
430 3 2 1 0 7 20 801377280 0.001261984517
431 3 2 1 1 6 21 747952128 0.001177852215
432 3 2 1 2 5 22 217147392 0.000341957095
433 3 2 1 3 4 23 22619520 0.000035620531
434 3 2 1 4 3 24 685440 0.000001079410
435 3 2 2 0 6 22 280482048 0.000441694581
436 3 2 2 1 5 23 217147392 0.000341957095
437 3 2 2 2 4 24 50893920 0.000080146194
438 3 2 2 3 3 25 4112640 0.000006476460
439 3 2 2 4 2 26 90720 0.000000142863
440 3 2 3 0 5 24 36191232 0.000056992849
441 3 2 3 1 4 25 22619520 0.000035620531
442 3 2 3 2 3 26 4112640 0.000006476460
443 3 2 3 3 2 27 241920 0.000000380968
444 3 2 3 4 1 28 3456 0.000000005442
445 3 2 4 0 4 26 1413720 0.000002226283
446 3 2 4 1 3 27 685440 0.000001079410
447 3 2 4 2 2 28 90720 0.000000142863
448 3 2 4 3 1 29 3456 0.000000005442
449 3 2 4 4 0 30 24 0.000000000038
450 3 3 0 0 7 21 133562880 0.000210330753
451 3 3 0 1 6 22 124658688 0.000196308703
452 3 3 0 2 5 23 36191232 0.000056992849
453 3 3 0 3 4 24 3769920 0.000005936755
454 3 3 0 4 3 25 114240 0.000000179902
455 3 3 1 0 6 23 124658688 0.000196308703
456 3 3 1 1 5 24 96509952 0.000151980931
457 3 3 1 2 4 25 22619520 0.000035620531
458 3 3 1 3 3 26 1827840 0.000002878427
459 3 3 1 4 2 27 40320 0.000000063495
460 3 3 2 0 5 25 36191232 0.000056992849
461 3 3 2 1 4 26 22619520 0.000035620531
462 3 3 2 2 3 27 4112640 0.000006476460
463 3 3 2 3 2 28 241920 0.000000380968
464 3 3 2 4 1 29 3456 0.000000005442
465 3 3 3 0 4 27 3769920 0.000005936755
466 3 3 3 1 3 28 1827840 0.000002878427
467 3 3 3 2 2 29 241920 0.000000380968
468 3 3 3 3 1 30 9216 0.000000014513
469 3 3 3 4 0 31 64 0.000000000101
470 3 3 4 0 3 29 114240 0.000000179902
471 3 3 4 1 2 30 40320 0.000000063495
472 3 3 4 2 1 31 3456 0.000000005442
473 3 3 4 3 0 32 64 0.000000000101
474 3 4 0 0 6 24 7791168 0.000012269294
475 3 4 0 1 5 25 6031872 0.000009498808
476 3 4 0 2 4 26 1413720 0.000002226283
477 3 4 0 3 3 27 114240 0.000000179902
478 3 4 0 4 2 28 2520 0.000000003968
479 3 4 1 0 5 26 6031872 0.000009498808
480 3 4 1 1 4 27 3769920 0.000005936755
481 3 4 1 2 3 28 685440 0.000001079410
482 3 4 1 3 2 29 40320 0.000000063495
483 3 4 1 4 1 30 576 0.000000000907
484 3 4 2 0 4 28 1413720 0.000002226283
485 3 4 2 1 3 29 685440 0.000001079410
486 3 4 2 2 2 30 90720 0.000000142863
487 3 4 2 3 1 31 3456 0.000000005442
488 3 4 2 4 0 32 24 0.000000000038
489 3 4 3 0 3 30 114240 0.000000179902
490 3 4 3 1 2 31 40320 0.000000063495
491 3 4 3 2 1 32 3456 0.000000005442
492 3 4 3 3 0 33 64 0.000000000101
493 3 4 4 0 2 32 2520 0.000000003968
494 3 4 4 1 1 33 576 0.000000000907
495 3 4 4 2 0 34 24 0.000000000038
496 4 0 0 0 9 16 94143280 0.000148253968
497 4 0 0 1 8 17 121041360 0.000190612245
498 4 0 0 2 7 18 50086080 0.000078874032
499 4 0 0 3 6 19 7791168 0.000012269294
500 4 0 0 4 5 20 376992 0.000000593676
501 4 0 1 0 8 18 121041360 0.000190612245
502 4 0 1 1 7 19 133562880 0.000210330753
503 4 0 1 2 6 20 46747008 0.000073615763
504 4 0 1 3 5 21 6031872 0.000009498808
505 4 0 1 4 4 22 235620 0.000000371047
506 4 0 2 0 7 20 50086080 0.000078874032
507 4 0 2 1 6 21 46747008 0.000073615763
508 4 0 2 2 5 22 13571712 0.000021372318
509 4 0 2 3 4 23 1413720 0.000002226283
510 4 0 2 4 3 24 42840 0.000000067463
511 4 0 3 0 6 22 7791168 0.000012269294
512 4 0 3 1 5 23 6031872 0.000009498808
513 4 0 3 2 4 24 1413720 0.000002226283
514 4 0 3 3 3 25 114240 0.000000179902
515 4 0 3 4 2 26 2520 0.000000003968
516 4 0 4 0 5 24 376992 0.000000593676
517 4 0 4 1 4 25 235620 0.000000371047
518 4 0 4 2 3 26 42840 0.000000067463
519 4 0 4 3 2 27 2520 0.000000003968
520 4 0 4 4 1 28 36 0.000000000057
521 4 1 0 0 8 19 121041360 0.000190612245
522 4 1 0 1 7 20 133562880 0.000210330753
523 4 1 0 2 6 21 46747008 0.000073615763
524 4 1 0 3 5 22 6031872 0.000009498808
525 4 1 0 4 4 23 235620 0.000000371047
526 4 1 1 0 7 21 133562880 0.000210330753
527 4 1 1 1 6 22 124658688 0.000196308703
528 4 1 1 2 5 23 36191232 0.000056992849
529 4 1 1 3 4 24 3769920 0.000005936755
530 4 1 1 4 3 25 114240 0.000000179902
531 4 1 2 0 6 23 46747008 0.000073615763
532 4 1 2 1 5 24 36191232 0.000056992849
533 4 1 2 2 4 25 8482320 0.000013357699
534 4 1 2 3 3 26 685440 0.000001079410
535 4 1 2 4 2 27 15120 0.000000023811
536 4 1 3 0 5 25 6031872 0.000009498808
537 4 1 3 1 4 26 3769920 0.000005936755
538 4 1 3 2 3 27 685440 0.000001079410
539 4 1 3 3 2 28 40320 0.000000063495
540 4 1 3 4 1 29 576 0.000000000907
541 4 1 4 0 4 27 235620 0.000000371047
542 4 1 4 1 3 28 114240 0.000000179902
543 4 1 4 2 2 29 15120 0.000000023811
544 4 1 4 3 1 30 576 0.000000000907
545 4 1 4 4 0 31 4 0.000000000006
546 4 2 0 0 7 22 50086080 0.000078874032
547 4 2 0 1 6 23 46747008 0.000073615763
548 4 2 0 2 5 24 13571712 0.000021372318
549 4 2 0 3 4 25 1413720 0.000002226283
550 4 2 0 4 3 26 42840 0.000000067463
551 4 2 1 0 6 24 46747008 0.000073615763
552 4 2 1 1 5 25 36191232 0.000056992849
553 4 2 1 2 4 26 8482320 0.000013357699
554 4 2 1 3 3 27 685440 0.000001079410
555 4 2 1 4 2 28 15120 0.000000023811
556 4 2 2 0 5 26 13571712 0.000021372318
557 4 2 2 1 4 27 8482320 0.000013357699
558 4 2 2 2 3 28 1542240 0.000002428673
559 4 2 2 3 2 29 90720 0.000000142863
560 4 2 2 4 1 30 1296 0.000000002041
561 4 2 3 0 4 28 1413720 0.000002226283
562 4 2 3 1 3 29 685440 0.000001079410
563 4 2 3 2 2 30 90720 0.000000142863
564 4 2 3 3 1 31 3456 0.000000005442
565 4 2 3 4 0 32 24 0.000000000038
566 4 2 4 0 3 30 42840 0.000000067463
567 4 2 4 1 2 31 15120 0.000000023811
568 4 2 4 2 1 32 1296 0.000000002041
569 4 2 4 3 0 33 24 0.000000000038
570 4 3 0 0 6 25 7791168 0.000012269294
571 4 3 0 1 5 26 6031872 0.000009498808
572 4 3 0 2 4 27 1413720 0.000002226283
573 4 3 0 3 3 28 114240 0.000000179902
574 4 3 0 4 2 29 2520 0.000000003968
575 4 3 1 0 5 27 6031872 0.000009498808
576 4 3 1 1 4 28 3769920 0.000005936755
577 4 3 1 2 3 29 685440 0.000001079410
578 4 3 1 3 2 30 40320 0.000000063495
579 4 3 1 4 1 31 576 0.000000000907
580 4 3 2 0 4 29 1413720 0.000002226283
581 4 3 2 1 3 30 685440 0.000001079410
582 4 3 2 2 2 31 90720 0.000000142863
583 4 3 2 3 1 32 3456 0.000000005442
584 4 3 2 4 0 33 24 0.000000000038
585 4 3 3 0 3 31 114240 0.000000179902
586 4 3 3 1 2 32 40320 0.000000063495
587 4 3 3 2 1 33 3456 0.000000005442
588 4 3 3 3 0 34 64 0.000000000101
589 4 3 4 0 2 33 2520 0.000000003968
590 4 3 4 1 1 34 576 0.000000000907
591 4 3 4 2 0 35 24 0.000000000038
592 4 4 0 0 5 28 376992 0.000000593676
593 4 4 0 1 4 29 235620 0.000000371047
594 4 4 0 2 3 30 42840 0.000000067463
595 4 4 0 3 2 31 2520 0.000000003968
596 4 4 0 4 1 32 36 0.000000000057
597 4 4 1 0 4 30 235620 0.000000371047
598 4 4 1 1 3 31 114240 0.000000179902
599 4 4 1 2 2 32 15120 0.000000023811
600 4 4 1 3 1 33 576 0.000000000907
601 4 4 1 4 0 34 4 0.000000000006
602 4 4 2 0 3 32 42840 0.000000067463
603 4 4 2 1 2 33 15120 0.000000023811
604 4 4 2 2 1 34 1296 0.000000002041
605 4 4 2 3 0 35 24 0.000000000038
606 4 4 3 0 2 34 2520 0.000000003968
607 4 4 3 1 1 35 576 0.000000000907
608 4 4 3 2 0 36 24 0.000000000038
609 4 4 4 0 1 36 36 0.000000000057
610 4 4 4 1 0 37 4 0.000000000006

Sorting table by hands or probability, note that mode of the probability distribution in is \((1, 1, 1, 1, 9)\), the same as the mean vector in , corresponding to the \(24\,100\,679\,680\) hands with with one ace, one king, one, queen, one jack, and 9 non-honor cards. From the distribution in we can obtain the distribution of the high card value \(V\). The computations are tedious and best done by computer. I know of no simple formula for the density function of \(V\), but table gives the results in tablular form.

High card value table
\(V\) Hands Probability
0 2310789600 0.003638961035
1 5006710800 0.007884415576
2 8611542576 0.013561194790
3 15636342960 0.024623636336
4 24419055136 0.038454383795
5 32933031040 0.051861933564
6 41619399184 0.065540961378
7 50979441968 0.080280871483
8 56466608128 0.088921893516
9 59413313872 0.093562275913
10 59723754816 0.094051148850
11 56799933520 0.089446804184
12 50971682080 0.080268651448
13 43906944752 0.069143318419
14 36153374224 0.056933231862
15 28090962724 0.044236791954
16 21024781756 0.033109185525
17 14997082848 0.023616948995
18 10192504020 0.016050844688
19 6579838440 0.010361729038
20 4086538404 0.006435356131
21 2399507844 0.003778671822
22 1333800036 0.002100427646
23 710603628 0.001119036936
24 354993864 0.000559033518
25 167819892 0.000264277651
26 74095248 0.000116682938
27 31157940 0.000049066574
28 11790760 0.000018567729
29 4236588 0.000006671650
30 1396068 0.000002198485
31 388196 0.000000611319
32 109156 0.000000171896
33 22360 0.000000035212
34 4484 0.000000007061
35 624 0.000000000983
36 60 0.000000000094
37 4 0.000000000006

Open the bridge app. Note the shape and location of the probability density function of \(V\). Run the experiment 1000 times and compare the empirical density function with the probability density function.

Note that \(V\) takes values from 0 to 37. The distribution is unimodal with mode 10, but highly skewed to the right. The following result give the quartiles of \(V\).

For the distribution of \(V\),

  1. The first quartile is 7
  2. The median is 10
  3. The thrid quartile is 13

As an indication of just how skewed the distribution is, the quantile of order 0.999 is 24.

The mean and variance of \(V\) are

  1. \(\E(V) = 10\)
  2. \(\var(V) = 290 / 17\)
Details:

These results follow from and standard properties of mean, variance and covariance. The standard deviation is about \(4.13\).

Suit Distributions

In addition to the distribution of a bridge hand by denomination, the distribution by suits is also important. Here are some basic defintions.

Sparse suits.

  1. If the hand has no cards in a suit, then the hand has a void in the suit.
  2. If the hand has just one card in a suit, then the hand has a singleton in the suit.
  3. If the hand has just two cards in a suit, then the hand has a doubleton in the suit.

Voids, singletons, and doubletons are important when the contract is in a suit (as opposed to no-trump) because the player may have an opportunity to take a trick in the sparse suit by trumping. On the other hand, the honor card value should be modified if there are sparse suits. For example, a queen loses much of her high card value if she's the only card in the suit.

Let \(S\), \(H\), \(D\), \(C\) denote the number of spades, hearts, diamonds, and clubs in the bridge hand. Then \((S, H, D, C)\) has the multivariate hypergeometric distribution with parameters \((13, 13, 13, 13)\) and \(13\). The probability density function \(g\) is \[g(s, h, d, c) = \frac{\binom{13}{s} \binom{13}{h} \binom{13}{d} \binom{13}{c}}{\binom{52}{13}}, \quad s, \, h, \, d, \, c \in \N, \; s + h + d + c = 13 \]

Details:

Again this follows from the definition of the multivariate hypergeometric distribution since we are selecting a random sample of size 13 from a population with 4 types of objects: 13 spades, 13 hearts, 13 diamonds, and 13 clubs.

Note that the random vector \((S, H, D, C)\) is exchangeable since any permutation of the coordinates has the same multivariate hypergeometric distribution. In particular, the variables are identically distributed.

Let \(X\) and \(Y\) denote distinct suit variables as in .

  1. \(X\) has the hypergoemetric distribution with parameters \((13, 39)\) and \(13\).
  2. \(\E(X) = 13 / 4\)
  3. \(\var(X) = 507 / 272\)
  4. \(\cov(X, Y) = -169 / 272\)
  5. \(\cor(X, Y) = -1 / 3\)
Details:

Again, these are standard properties of the multivariate hypergeometric distribution.

Run the bridge experiment 1000 times. For each of the following random variables, note the shape and location of the probability density function, and compare the empirical density and moments to the probability density and moments.

  1. \(S\)
  2. \(H\)
  3. \(D\)
  4. \(C\)

The next definition gives a numerical measure of the strength of the hand based on the sparse suits.

The sparse suit value of a bridge hand is \(W = 3 Z_0 + 2 Z_1 + Z_2\) where \(Z_0\) is the number of voids, \(Z_1\) the number singletons, and \(Z_2\) the number of doubletons.

In table below we list the 39 distinct suit distribution patterns (the number of cards in the suits, without specifying the acutal suits). For each pattern, the common suit value of the hands is given, as well as the number of hands and the probability. Because of the exchangeable property, the probability density function in could be derived from this table.

Suit pattern table
Case Pattern \(Z_0\) \(Z_1\) \(Z_2\) \(W\) Hands Probability
1 [0, 0, 0, 13] 3 0 0 9 4 0.000000000006
2 [0, 0, 1, 12] 2 1 0 8 2028 0.000000003194
3 [0, 0, 2, 11] 2 0 1 7 73008 0.000000114971
4 [0, 0, 3, 10] 2 0 0 6 981552 0.000001545718
5 [0, 0, 4, 9] 2 0 0 6 6134700 0.000009660739
6 [0, 0, 5, 8] 2 0 0 6 19876428 0.000031300793
7 [0, 0, 6, 7] 2 0 0 6 35335872 0.000055645854
8 [0, 1, 1, 11] 1 2 0 7 158184 0.000000249103
9 [0, 1, 2, 10] 1 1 1 6 6960096 0.000010960547
10 [0, 1, 3, 9] 1 1 0 5 63800880 0.000100471681
11 [0, 1, 4, 8] 1 1 0 5 287103960 0.000452122566
12 [0, 1, 5, 7] 1 1 0 5 689049504 0.001085094158
13 [0, 1, 6, 6] 1 1 0 5 459366336 0.000723396106
14 [0, 2, 2, 9] 1 0 2 5 52200720 0.000082204103
15 [0, 2, 3, 8] 1 0 1 4 689049504 0.001085094158
16 [0, 2, 4, 7] 1 0 1 4 2296831680 0.003616980528
17 [0, 2, 5, 6] 1 0 1 4 4134297024 0.006510564950
18 [0, 3, 3, 7] 1 0 0 3 1684343232 0.002652452387
19 [0, 3, 4, 6] 1 0 0 3 8421716160 0.013262261935
20 [0, 3, 5, 5] 1 0 0 3 5684658408 0.008952026806
21 [0, 4, 4, 5] 1 0 0 3 7895358900 0.012433370565
22 [1, 1, 1, 10] 0 3 0 6 2513368 0.000003957975
23 [1, 1, 2, 9] 0 2 1 5 113101560 0.000178108890
24 [1, 1, 3, 8] 0 2 0 4 746470296 0.001175518672
25 [1, 1, 4, 7] 0 2 0 4 2488234320 0.003918395572
26 [1, 1, 5, 6] 0 2 0 4 4478821776 0.007053112029
27 [1, 2, 2, 8] 0 1 2 4 1221496848 0.001923576008
28 [1, 2, 3, 7] 0 1 1 3 11943524736 0.018808298745
29 [1, 2, 4, 6] 0 1 1 3 29858811840 0.047020746862
30 [1, 2, 5, 5] 0 1 1 3 20154697992 0.031739004132
31 [1, 3, 3, 6] 0 1 0 2 21896462016 0.034481881032
32 [1, 3, 4, 5] 0 1 0 2 82111732560 0.129307053871
33 [1, 4, 4, 4] 0 1 0 2 19007345500 0.029932188396
34 [2, 2, 2, 7] 0 0 3 3 3257324928 0.005129536021
35 [2, 2, 3, 6] 0 0 2 2 35830574208 0.056424896235
36 [2, 2, 4, 5] 0 0 2 2 67182326640 0.105796680440
37 [2, 3, 3, 5] 0 0 1 1 98534079072 0.155168464645
38 [2, 3, 4, 4] 0 0 1 1 136852887600 0.215511756452
39 [3, 3, 3, 4] 0 0 0 0 66905856160 0.105361303154
Details:

This follows from the multivariate hypergeometric distribution in , but the computations are tedious. Since a bridge hand has an odd number of cards, not every pattern is possible. The pattern with all four numbers the same is not possible and neither is the pattern with two numbers the same and the other two numbers the same.

  1. A pattern with three numbers the same and one different corresponds to 4 suit distributions. There are 5 such patterns.
  2. A pattern with two numbers the same and the other two distinct corresponds to \(4! / 2! = 12\) suit distributions. There are 23 such patterns.
  3. A pattern with all four numbers distinct corresponds to \(4! = 24\) suit distributions. There are 11 such patterns

So the number of suit distributions (as permutations) is \(5 \cdot 4 + 23 \cdot 12 + 11 \cdot 24 = 560\). The table of these would be quite unwieldy (and unnecessary). The number of suit distributions could also be obtained combinatorially as the number of nonnegative integer solutions of the equation \(x + y + z + w = 13\). The answer is \(\binom{4 + 13 - 1}{13} = \binom{16}{13} = 560\).

Note that the \([2, 3, 4, 4]\) pattern is the mode of the probability distribution and this pattern has one doubleton. The 12 suit distributions that have this pattern are the modes of the hypergeometric distribution in . Table below gives the joint distribution of the number of voids, the number of singletons, and the number of doubletons in a random bridge hand.

Sparse suit table
\(Z_0\) \(Z_1\) \(Z_2\) \(W\) Hands Probability
0 0 0 0 66905856160 0.105361303154
0 0 1 1 235386966672 0.370680221097
0 0 2 2 103012900848 0.162221576675
0 0 3 3 3257324928 0.005129536021
0 1 0 2 123015540076 0.193721123299
0 1 1 3 61957034568 0.097568049739
0 1 2 4 1221496848 0.001923576008
0 2 0 4 7713526392 0.012147026273
0 2 1 5 113101560 0.000178108890
0 3 0 6 2513368 0.000003957975
1 0 0 3 23686076700 0.037300111694
1 0 1 4 7120178208 0.011212639636
1 0 2 5 52200720 0.000082204103
1 1 0 5 1499320680 0.002361084511
1 1 1 6 6960096 0.000010960547
1 2 0 7 158184 0.000000249103
2 0 0 6 62328552 0.000098153104
2 0 1 7 73008 0.000000114971
2 1 0 8 2028 0.000000003194
3 0 0 9 4 0.000000000006
Details:

This follows from and also from , although again the computations are tedious.

There are 20 points in the support set of this distribution. The mode of the distribution is \((0, 0, 1)\), corresponding to hands with one doubleton and no voids or singletons. The approximate means, variances, covariances and correlations are given next.

Again, let \(Z_0\) denote the number of voids, \(Z_1\) the number of singletons, and \(Z_2\) the number of doubletons.

  1. \(\E(Z_0) = 0.0512\), \(\E(Z_1) = 0.3202\), \(\E(Z_2) = 0.8235\)
  2. \(\var(Z_0) = 0.0487\), \(\var(Z_1) = 0.2424\), \(\var(Z_2) = 0.5406\)
  3. \(\cov(Z_0, Z_1) = -0.0140\), \(\cov(Z_0, Z_2) = -0.0307\), \(\cov(Z_1, Z_2) = - 0.1619\)
  4. \(\cor(Z_0, Z_1) = -0.1829\), \(\cor(Z_0, Z_2) = -0.1960\), \(\cor(Z_1, Z_2) = -0.4631\)

Of course, distinct variables are negatively correlated: more of one type of sparse suit suggests less of another type. The marginal distributions are given next.

Table of voids
\(Z_0\) Hands Probability
0 602586261420 0.948934479131
1 32364894588 0.050967249594
2 62403588 0.000098271268
3 4 0.000000000006
Table of singletons
\(Z_1\) Hands Probability
0 439483905800 0.692085860461
1 187700354296 0.295584797298
2 7826786136 0.012325384266
3 2513368 0.000003957975
Table of doubletons
\(Z_2\) Hands Probability
0 222885322144 0.350993012314
1 304584314112 0.479650094880
2 104286598416 0.164227356785
3 3257324928 0.005129536021

Run the bridge experiment 1000 times. For each of the following random variables, note the shape and location of the probability density function, and compare the empirical density and moments to the probability density and moments.

  1. \(Z_0\)
  2. \(Z_1\)
  3. \(Z_2\)

Table next gives the probability distribution of the sparse suit value \(W\) of a bridge hand.

Sparse suit value table
\(W\) Hands Probability
0 66905856160 0.105361303154
1 235386966672 0.370680221097
2 226028440924 0.355942699974
3 88900436196 0.139997697454
4 16055201448 0.025283241917
5 1664622960 0.002621397504
6 71802016 0.000113071626
7 231192 0.000000364074
8 2028 0.000000003194
9 4 0.000000000006
Details:

This follows from or or .

Note that the distribution is unimodal with mode 1, so once again corresponding to hands with one doubleton and no voids or singletons. The distribution is also highly skewed. The first quartile is 1 and the median and third quartile are both 2. The quantile of order 0.999 is 5. The mean is approximately 1.617 and the variance is approximately 0.912

Open the bridge app. Note the shape and location of the probability density function of the suit value \(W\). Run the experiment 1000 times and compare the empirical density function with the probability density function.

More generally, long and short suits are important in judging the strength of a bridge hand, particularly when the contract is in a suit.

Longest and shortest suits

  1. Let \(L_0 = \min\{S, H, C, D\}\) denote the number of cards in the shortest suit.
  2. Let \(L_1 = \max\{S, H, C, D\}\) denote the number of cards in the largest suit.

Table next gives the joint density function of \((L_0, L_1)\).

Table of the shortest and longest suits
\(L_0\) \(L_1\) Hands Probability
0 5 13580017308 0.021385397371
0 6 13015379520 0.020496222991
0 7 4705560288 0.007410172928
0 8 996029892 0.001568517517
0 9 122136300 0.000192336523
0 10 7941648 0.000012506265
0 11 231192 0.000000364074
0 12 2028 0.000000003194
0 13 4 0.000000000006
1 4 19007345500 0.029932188396
1 5 102266430552 0.161046058003
1 6 56234095632 0.088555739924
1 7 14431759056 0.022726694317
1 8 1967967144 0.003099094680
1 9 113101560 0.000178108890
1 10 2513368 0.000003957975
2 4 136852887600 0.215511756452
2 5 165716405712 0.260965145085
2 6 35830574208 0.056424896235
2 7 3257324928 0.005129536021
3 4 66905856160 0.105361303154

Note that \(L_0\) takes values in \(\{0, 1, 2, 3\}\) and \(L_1\) takes values in \(\{4, 5, \ldots, 13\}\) but not all pairs of values are possible. The support set has 21 elements. Sorting on hands or probability in table shows that the mode of the distribution is \((2, 5)\), corresponding to hands with a doubleton and a 5 card suit (and therefore suit patterns \([2, 2, 4, 5])\) or \([2, 3, 3, 5])\).

If \(L_1 - L_0 \in \{1, 2\}\) then the hand is balanced; otherwise it's unbalanced.

The marginal density functions of \((L_0, L_1)\) are given in table and table .

Table of the shortest suit
\(L_0\) Hands Probability
0 32427298180 0.051065520869
1 194023212812 0.305541842184
2 341657192448 0.538031333793
3 66905856160 0.105361303154

The mode of the distribution is 2, corresponding to hands with one or more doubletons but no voids or singletons. The mean is about 1.698 and the variance is about 0.5328.

Table of the longest suit
\(L_1\) Hands Probability
4 222766089260 0.350805248002
5 281562853572 0.443396600459
6 105080049360 0.165476859150
7 22394644272 0.035266403266
8 2963997036 0.004667612197
9 235237860 0.000370445412
10 10455016 0.000016464241
11 231192 0.000000364074
12 2028 0.000000003194
13 4 0.000000000006

The mode of the distribution is 5. The mean is about 4.901 and the variance is about 0.6959.

Run the bridge experiment 1000 times. For each of the following random variables, note the shape and location of the probability density function, and compare the empirical density and moments to the probability density and moments.

  1. \(L_0\)
  2. \(L_1\)

Missing Cards

One of the factors that makes bridge such an interesting card game is that the players gain lots of information about the bridge deal during the course of play. During the bidding, the players are communicating information about their hands to their partners, but also to the opponents. Once a contract is reached, each player sees half of the deck, but a slightly different half: her own hand and the dummy's. Then, after play begins, cards that are exposed as tricks are taken give yet more information. Through study and lots of play, good bridge players develop excellent memories for the information that has been provided at a given point in tme, and a good intuitive sense of when one event is more probable than another, given the information provided. One of the simplest examples involves the distribution of missing cards in a suit.

Suppose that East wins the contract and West, as dummy, lays down her hand. East observes that \(k \in \{1, 2, 3, \ldots, 13\}\) of the cards in a particular suit belong to the opponents. Then the number of the cards \(X\) that belong to North has the hypergeometric distribution with parameters \((k, 26 - k)\) and \(13\), and so \[\P(X = x) = \frac{\binom{k}{x} \binom{26 - k}{13 - x}}{\binom{26}{13}}, \quad x \in \{0, 1, \ldots, k\}\]

Details:

A basic property of the hypergeometric model is that it is preserved under the type of conditioning in this problem. Essentially, we can reduce the experiment to dealing 13 cards each to East and West from a deck with \(k\) cards in the suit in question, and \(26 - k\) cards that are not in that suit. The number of cards in the suit that belong to South is \(k - X\), which has the same hypergeometric distribution.

The distribution in is symmetric about \(k / 2\), that is \(\P(X = x) = \P(X = k - x)\) for \(x \in \{0, 1, \ldots, k\}\). The distribution is also unimodal, with a single mode at \(k / 2\) if \(k\) is even, and adjacent modes at \((k - 1) / 2\) and \((k + 1) / 2\) if \(k\) is odd. But sometimes we don't care precisely how many of the cards belong to North, but rather how the missing cards are split between North and South. By convention, we will denote the split as an ordered pair, with the smaller number first:

In the context of , let \(U = \min\{X, k - X\}\) so that \(U\) takes values in \(\{0, 1, \ldots, \lfloor k / 2 \rfloor\}\). Then the split between North and South is \((U, k - U)\).

  1. If \(k\) is even, the probability of the even split \((k / 2, k / 2)\) is \[\P(U = k / 2) = \P(X = k / 2) = \frac{\binom{k}{k / 2} \binom{26 - k}{13 - k / 2}}{\binom{26}{13}}\]
  2. In all other case (so \(j \lt k / 2)\), the probability of the \((j, k - j)\) split is \[\P(U = j) = 2 \P(X = j) = 2 \frac{\binom{13}{j} \binom{26 - k}{13 - j}}{\binom{26}{13}}\]
Details:

This follows immediately from . Of course, \(k - U = \max\{X, k - X\}\).

Open the missing card experiment. Vary the parameter \(k\) and note the shape and location of the probability density function of \(U\). For selected values of \(k\), run the experiment 1000 times and compare the empirical density and moments to the probability density and moments.

From the analysis in and the graphics in , it's clear that \(U\) has a folded hypergeometric distribution of sorts. Tables give the probability distribution of the splits for each \(k \in \{1, 2, \ldots, 13\}\). Naturally, our interest is in the most probable split. Sorting the table by hands or probability gives the following result.

Consider again the setting of .

  1. If \(k = 2\) the most probable split is \((1, 1)\)
  2. If \((k \gt 2\) is even, the most probable split is \((k / 2 - 1, k / 2 + 1)\).
  3. If \(k\) is odd, the most probable split is \(((k - 1) / 2, (k + 1) / 2)\).

So except when \(k = 2\), the even split is never the most probable, but rather the almost even split.

Tables of splits

1 card
Split Hands Prob
(0, 1) 10400600 1.000000000000
2 cards
Split Hands Prob
(0, 2) 4992288 0.480000000000
(1, 1) 5408312 0.520000000000
3 cards
Split Hands Prob
(0, 3) 2288132 0.220000000000
(1, 2) 8112468 0.780000000000
4 cards
Split Hands Prob
(0, 4) 994840 0.095652173913
(1, 3) 5173168 0.497391304348
(2, 2) 4232592 0.406956521739
5 cards
Split Hands Prob
(0, 5) 406980 0.039130434783
(1, 4) 2939300 0.282608695652
(2, 3) 7054320 0.678260869565
6 cards
Split Hands Prob
(0, 6) 155040 0.014906832298
(1, 5) 1511640 0.145341614907
(2, 4) 5038800 0.484472049689
(3, 3) 3695120 0.355279503106
7 cards
Split Hands Prob
(0, 7) 54264 0.005217391304
(1, 6) 705432 0.067826086957
(2, 5) 3174444 0.305217391304
(3, 4) 6466460 0.621739130435
8 cards
Split Hands Prob
(0, 8) 17136 0.001647597254
(1, 7) 297024 0.028558352403
(2, 6) 1782144 0.171350114416
(3, 5) 4900896 0.471212814645
(4, 4) 3403400 0.327231121281
9 cards
Split Hands Prob
(0, 9) 4760 0.000457665904
(1, 8) 111384 0.010709382151
(2, 7) 891072 0.085675057208
(3, 6) 3267264 0.314141876430
(4, 5) 6126120 0.589016018307
10 cards
Split Hands Prob
(0, 10) 1120 0.000107686095
(1, 9) 36400 0.003499798089
(2, 8) 393120 0.037797819357
(3, 7) 1921920 0.184789339077
(4, 6) 4804800 0.461973347691
(5, 5) 3243240 0.311832009692
11 cards
Split Hands Prob
(0, 11) 210 0.000020191143
(1, 10) 10010 0.000962444474
(2, 9) 150150 0.014436667115
(3, 8) 990990 0.095282002961
(4, 7) 3303300 0.317606676538
(5, 6) 5945940 0.571692017768
12 cards
Split Hands Prob
(0, 12) 28 0.000002692152
(1, 11) 2184 0.000209987885
(2, 10) 48048 0.004619733477
(3, 9) 440440 0.042347556872
(4, 8) 1981980 0.190564005923
(5, 7) 4756752 0.457353614215
(6, 6) 3171168 0.304902409476
13 cards
Split Hands Prob
(0, 13) 2 0.000000192297
(1, 12) 338 0.000032498125
(2, 11) 12168 0.001169932504
(3, 10) 163592 0.015729092552
(4, 9) 1022450 0.098306828452
(5, 8) 3312738 0.318514124185
(6, 7) 5889312 0.566247331885