1. Random
  2. 0
  3. 1
  4. 2
  5. 3
  6. 4
  7. 5
  8. 6
  9. 7
  10. 8
  11. 9
  12. 10
  13. 11
  14. 12
  15. 13
  16. 14
  17. 15
  18. 16
  19. 17

10. Bernoulli Trials

Summary

The Bernoulli trials process is one of the simplest, yet most important, of all random processes. It is an essential topic in any course in probability or mathematical statistics. The process consists of independent trials with two outcomes and with constant probabilities from trial to trial. Thus it is the mathematical abstraction of coin tossing. The process leads to several important probability distributions: the binomial, geometric, and negative binomial.

Topics

  1. Introduction
  2. The Binomial Distribution
  3. The Geometric Distribution
  4. The Negative Binomial Distribution
  5. The Multinomial Distribution
  6. The Simple Random Walk
  7. The Beta-Bernoulli Process

Apps

Related Topics

Bernoulli trials appear in many chapters in this project, further evidence of the importance of the model.

Sources and Resources

Quote