1. Random
  2. 0
  3. 1
  4. 2
  5. 3
  6. 4
  7. 5
  8. 6
  9. 7
  10. 8
  11. 9
  12. 10
  13. 11
  14. 12
  15. 13
  16. 14
  17. 15
  18. 16
  19. 17

7. Set Estimation

Summary

Set estimation refers to the process of constructing a subset of the parameter space, based on observed data from a probability distribution. The subset will contain the true value of the parameter with a specified confidence level. In this chapter, we explore the basic method of set estimation using pivot variables. We study set estimation in some of the most important models: the single variable normal model, the two-variable normal model, and the Bernoulli model.

Topics

  1. Introduction
  2. Estimation the Normal Model
  3. Estimation in the Bernoulli Model
  4. Estimation in the Two-Sample Normal Model
  5. Bayesian Set Estimation

Apps

Sources and Resources

Quote